Extensions of local fields in characteristic 0 and characteristic *p* (d'après P. Deligne)

> Kevin Keating Department of Mathematics University of Florida

> > June 1, 2023

Notation

Let K be a local field, complete w.r.t. the valuation $v_K : K^{\times} \to \mathbb{Z}$. Then v_K extends uniquely to a valuation on the separable closure K^{sep} of K, which we also denote by v_K . Define

$$\mathcal{O}_{K} = \{ x \in K : v_{K}(x) \ge 0 \}$$
$$\mathcal{P}_{K} = \{ x \in K : v_{K}(x) > 0 \}.$$

Assume that the residue field $k = O_K / P_K$ of K is a perfect field of characteristic p.

If char(K) = 0 and k is finite, then K is a finite extension of \mathbb{Q}_p . If char(K) = p then $K \cong k((t))$.

Let $e_K = v_K(p)$ be the absolute ramification index of K.

Let π_K be a uniformizer for K. Thus $v_K(\pi_K) = 1$.

If L/K is an extension of local fields let $e_{L/K} = v_L(\pi_K)$ denote the ramification index of L/K.

A not-so-crazy idea

If char(K) = 0 but e_K is large then K should be similar to a local field of characteristic p.

In fact, let K be a local field of characteristic 0 with residue field k, and let F be a local field of characteristic p with the same residue field k. Then for $1 \le d \le e_K$ we have

$$\mathcal{O}_{\mathcal{K}}/\mathcal{P}^d_{\mathcal{K}} \cong k[[t]]/(t^d) \cong \mathcal{O}_{\mathcal{F}}/\mathcal{P}^d_{\mathcal{F}}.$$

Deligne [De79] devised a theory of extensions of "truncated valuation rings" which correspond to extensions of both K and F, but with bounds on ramification.

This leads to a one-to-one correspondence between extensions of K with bounded ramification and extensions of F with bounded ramification.

The category of truncated valuation rings

Define a category \mathcal{T} whose objects are triples (A, M, ϵ) , where

- A is an Artin local ring whose maximal ideal \mathcal{P}_A is principal.
- A/\mathcal{P}_A is a perfect field with positive characteristic.
- *M* is a free *A*-module of rank 1.
- $\epsilon: M \to A$ is an A-module homomorphism such that $\epsilon(M) = \mathcal{P}_A$.

Define the length of $S = (A, M, \epsilon)$ to be the length of the A as an A-module.

Example

Let *K* be a local field and let $d \in \mathbb{N}$. Set $A = \mathcal{O}_K / \mathcal{P}_K^d$, $M = \mathcal{P}_K / \mathcal{P}_K^{d+1}$, and let $\epsilon : \mathcal{P}_K / \mathcal{P}_K^{d+1} \to \mathcal{O}_K / \mathcal{P}_K^d$ be induced by the inclusion $\mathcal{P}_K \hookrightarrow \mathcal{O}_K$. Then (A, M, ϵ) is an element of \mathcal{T} with length d.

Denote the triple constructed in the example by $Tr_d(K)$.

Morphisms in \mathcal{T}

For i = 1, 2 let $S_i = (A_i, M_i, \epsilon_i) \in \mathcal{T}$. A \mathcal{T} -morphism $f : S_1 \to S_2$ is a triple (e, μ, η) where

• $e \ge 1$. (Say *e* is the ramification index of S_2 over S_1 .)

•
$$\mu: A_1 \rightarrow A_2$$
 is a ring homomorphism.

• $\eta: M_1 \to M_2^{\otimes e}$ is an A_1 -module homomorphism.

(Here $M_2^{\otimes e} = M_2 \otimes_{A_2} \cdots \otimes_{A_2} M_2$, with *e* factors.)

These must satisfy

• η induces an A_2 -module isomorphism $M_1 \otimes_{A_1} A_2 \cong M_2^{\otimes e}$. Let $f = (e, \mu, \eta)$ be a \mathcal{T} -morphism from S_1 to S_2 . Say f is a \mathcal{T} -extension if length $(S_2) = e \cdot \text{length}(S_1)$. In this case we write S_2/S_1 .

Morphisms in \mathcal{T} (continued)

If we have another \mathcal{T} -morphism $g: S_2 \to S_3$ given by $g = (e', \nu, \theta)$ then $g \circ f: S_1 \to S_3$ is defined by $g \circ f = (ee', \nu \circ \mu, \theta^{\otimes e} \circ \eta)$.

We have $id_{S_i} = (1, id_{A_i}, id_{M_i})$. Let $f = (e, \mu, \eta)$ be a \mathcal{T} -morphism from S_1 to S_2 . Then f is an isomorphism if and only if e = 1, μ is a ring isomorphism, and η is an isomorphism of A_1 -modules.

Proposition ([De79, 1.2])

Let $S = (A, M, \epsilon) \in \mathcal{T}$. Then there is a local field K and $d \in \mathbb{N}$ such that $S \cong Tr_d(K)$.

Example

If
$$1 \leq d \leq e_{\mathcal{K}}$$
 then $\operatorname{Tr}_{d}(\mathcal{K}) \cong (k[[t]]/(t^{d}), (t)/(t^{d+1}), \epsilon)$, where $k = \mathcal{O}_{\mathcal{K}}/\mathcal{P}_{\mathcal{K}}$ and ϵ is induced by $(t) \hookrightarrow k[[t]]$.

\mathcal{T} -extensions induced by field embeddings

Let K, L be local fields and let $\sigma : K \to L$ be a field embedding. Then for $d \in \mathbb{N}$ we get a \mathcal{T} -morphism $f_{\sigma} = (e_{\sigma}, \mu_{\sigma}, \eta_{\sigma})$ from $\operatorname{Tr}_{d}(K)$ to $\operatorname{Tr}_{de_{\sigma}}(L)$, where

• e_{σ} is the ramification index of L over $\sigma(K)$.

•
$$\mu_{\sigma} : \mathcal{O}_{K}/\mathcal{P}_{K}^{d} \to \mathcal{O}_{L}/\mathcal{P}_{L}^{de_{\sigma}}$$
 is induced by σ .

• $\eta_{\sigma}: \mathcal{P}_{K}/\mathcal{P}_{K}^{d+1} \to \mathcal{P}_{L}^{e_{\sigma}}/\mathcal{P}_{L}^{e_{\sigma}(d+1)} \cong (\mathcal{P}_{L}/\mathcal{P}_{L}^{e_{\sigma}d+1})^{\otimes e_{\sigma}}$ is induced by σ .

It follows from the definitions that $f_{\sigma} : \operatorname{Tr}_{d}(K) \to \operatorname{Tr}_{de_{\sigma}}(L)$ is an extension of truncated valuation rings.

The category of extensions of a truncated valuation ring

Let $S_1 = (A_1, M_1, \epsilon_1)$ be an object in \mathcal{T} . Define a category $ext(S_1)$ whose objects are \mathcal{T} -extensions $f : S_1 \to S_2$. If $g : S_1 \to S_3$ is another object in $ext(S_1)$, a morphism from S_2/S_1 to S_3/S_1 is a \mathcal{T} -morphism $h : S_2 \to S_3$ such that $h \circ f = g$.

Proposition ([De79], Lemma 1.4.4)

Let $S/Tr_d(K)$ be a \mathcal{T} -extension with ramification index e. Then there is a finite separable field extension L/K such that $Tr_{de}(L)/Tr_d(K)$ is isomorphic to $S/Tr_d(K)$ in the category ext $(Tr_d(K))$.

A functor

Let K be a local field, and let ext(K) be the category of finite separable extensions of K.

Let $d \in \mathbb{N}$. We get a functor $\mathcal{F}_d : \operatorname{ext}(K) \to \operatorname{ext}(\operatorname{Tr}_d(K))$ by $\mathcal{F}_d(L) = \operatorname{Tr}_{de_{L/K}}(L)$. For a *K*-embedding $\sigma : L \to L'$ we define $\mathcal{F}_d(\sigma) = f_{\sigma}$, where

$$f_{\sigma}: \mathrm{Tr}_{de_{L/K}}(L) \longrightarrow \mathrm{Tr}_{de_{L'/K}}(L')$$

was defined above.

The functor \mathcal{F}_d is essentially surjective, but it need not be full or faithful . . .

An example

Let K = k((t)) be a local field of characteristic p, and let L be the extension of K generated by a root of $g(X) = X^p - X - t^{-2p+1}$. Then L/K is a totally ramified cyclic extension of degree p, with $e_{L/K} = p$. Let α be a root of g(X). Then there is $\sigma \in \text{Gal}(L/K)$ such that $\sigma(\alpha) = \alpha + 1$. Set $\pi_L = t^2 \alpha$. Then $v_L(\pi_L) = 1$ and $\sigma(\pi_L) = \pi_L + t^2$. Taking d = 1, we find that $\text{Tr}_p(L)$ is a \mathcal{T} -extension of $\text{Tr}_1(K)$. The functor $\mathcal{F}_1 : \text{ext}(K) \longrightarrow \text{ext}(\text{Tr}_1(K))$

gives a homomorphism from Gal(L/K) to $Aut(Tr_p(L)/Tr_1(K))$.

Since σ induces the identity on both $\mathcal{O}_L/\mathcal{P}_L^p$ and $\mathcal{P}_L/\mathcal{P}_L^{p+1}$, we have $\mathcal{F}_1(\sigma) = \mathcal{F}_1(\mathrm{id}_L)$. Hence \mathcal{F}_1 is not faithful.

Example (continued)

On the other hand, for $c \in k^{\times}$ we can define an $ext(Tr_1(K))$ -morphism $g_c : Tr_p(L) \to Tr_p(L)$ by $g_c = (1, id_{\mathcal{O}_L/\mathcal{P}_L^p}, \eta_c)$, where

$$\eta_{c}: \mathcal{P}_{L}/\mathcal{P}_{L}^{p+1} \longrightarrow \mathcal{P}_{L}/\mathcal{P}_{L}^{p+1}$$

is the $\mathcal{O}_L/\mathcal{P}_L^p$ -module homomorphism defined by

$$\eta_c(\pi_L + \mathcal{P}_L^{p+1}) = \pi_L + c\pi_L^p + \mathcal{P}_L^{p+1}.$$

So \mathcal{F}_1 is not full.

Similar arguments show that

$$\mathcal{F}_d : \mathsf{ext}(K) \longrightarrow \mathsf{ext}(\mathsf{Tr}_d(K))$$

is neither full nor faithful for any $d \in \mathbb{N}$.

Higher ramification theory

Let L/K be a separable extension of local fields. Let L_0/K be the maximal unramified subextension of L/K and set

$$\Gamma = \{ \sigma : L \to K^{sep} \mid \sigma|_{K} = \mathrm{id}_{K} \}$$

$$\Gamma_{0} = \{ \sigma \in \Gamma : \sigma|_{L_{0}} = \mathrm{id}_{L_{0}} \}.$$

For nonnegative real x define a subset of Γ by

$$\Gamma_x = \{ \sigma \in \Gamma_0 : v_L(\sigma(\pi_L) - \pi_L) \ge x + 1 \}.$$

Say Γ_x is the *x*th lower ramification subset of Γ .

We have the following:

- If $x \ge y \ge 0$ then $\Gamma_x \subset \Gamma_y$.
- $\Gamma_x = {id_L}$ for all sufficiently large x.

The upper numbering for ramification sets

Define the Hasse-Herbrand function $\phi_{L/K}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ by

$$\phi_{L/K}(x) = \frac{1}{[L:L_0]} \int_0^x |\Gamma_t| dt.$$

Then $\phi_{L/K}$ is a continuous bijection, so we can define $\psi_{L/K} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ by $\psi_{L/K} = \phi_{L/K}^{-1}$.

For $y \ge 0$ set $\Gamma^y = \Gamma_{\psi_{L/K}(y)}$. Say Γ^y is the *y*th upper ramification subset of Γ .

We have $\Gamma^{y} = {id_{L}}$ for y sufficiently large. Set

 $m_{L/K} = \inf\{y \ge 0 : \Gamma^y = \{\mathrm{id}_L\}\}.$

An example

Let $K = \mathbb{Q}_2$ and let L be generated over \mathbb{Q}_2 by a root $\pi_L = 2^{1/4}$ of $g(X) = X^4 - 2$. Then $L = \mathbb{Q}_2(\pi_L)$.

Let i be a primitive 4th root of unity. Then the $\mathbb{Q}_2\text{-embeddings}$ of L into \mathbb{Q}_2^{sep} are defined by

$$\sigma_1(\pi_L) = \pi_L \qquad \sigma_i(\pi_L) = \pi_L i$$

$$\sigma_{-1}(\pi_L) = -\pi_L \qquad \sigma_{-i}(\pi_L) = -\pi_L i.$$

We have $v_L(\sigma_{-1}(\pi_L) - \pi_L) = 5$ and $v_L(\sigma_{\pm i}(\pi_L) - \pi_L) = 3$. Hence

$$|\Gamma_x| = \begin{cases} 4 & (0 \le x \le 2) \\ 2 & (2 < x \le 4) \\ 1 & (4 < x). \end{cases} \quad |\Gamma^y| = \begin{cases} 4 & (0 \le y \le 2) \\ 2 & (2 < y \le 3) \\ 1 & (3 < y). \end{cases}$$

It follows that $m_{L/K} = 3$.

Hasse-Herbrand functions for L/K

Let L/K be a finite separable extension of local fields and let $a \ge 0$. Say L/K satisfies condition C^a if one of the following equivalent conditions holds:

- $\Gamma^a = \{ \mathrm{id}_L \}$
- $a > m_{L/K}$.

For a local field K let $ext(K)^a$ denote the full subcategory of ext(K) whose objects are finite separable extensions of K satisfying C^a .

Condition C^a for truncated valuation rings

Let $S \in \mathcal{T}$ and set d = length(S). Then there is a local field K such that $S \cong \text{Tr}_d(K)$.

Let $T/S \in \text{ext}(S)$, and let *e* be the ramification index of *T* over *S*. Then there is a separable extension L/K such that $\text{Tr}_{de}(L) \cong T$ and following diagram commutes:

$$\operatorname{Tr}_{de}(L) \xrightarrow{\sim} T$$
 $\uparrow \qquad \uparrow$
 $\operatorname{Tr}_{d}(K) \xrightarrow{\sim} S$

Let $a \leq d$. We say that the \mathcal{T} -extension T/S satisfies C^a if L/K satisfies C^a . This definition depends only on the \mathcal{T} -extension T/S, and not on the choices of K and L.

We define a category $ext(S)^a$ whose objects are \mathcal{T} -extensions of S which satisfy C^a .

An equivalence relation on \mathcal{T} -morphisms

Let $c \in \mathbb{N}$ and let $f = (e, \mu, \eta)$, $f' = (e', \mu', \eta')$ be \mathcal{T} -morphisms from $S_1 = (A_1, M_1, \epsilon_1)$ to $S_2 = (A_2, M_2, \epsilon_2)$. Say $f \equiv f' \pmod{R(c)}$ if all of the following hold:

•
$$e = e'$$
.

• μ and μ' induce the same map from A_1/M_1 to A_2/M_2 .

•
$$\eta(x) - \eta'(x) \in \mathcal{P}_{A_2}^{ec} M_2^{\otimes e}$$
 for all $x \in M_1$.

Suppose $S_1 = \text{Tr}_d(L_1)$, $S_2 = \text{Tr}_{de}(L_2)$, $f = f_{\sigma}$, and $f' = f_{\sigma'}$ for some embeddings $\sigma, \sigma' : L_1 \to L_2$. Then the second and third conditions are equivalent to

$$v_{L_2}(\sigma(\alpha) - \sigma'(\alpha)) \ge e(c+1)$$

for all $\alpha \in \mathcal{O}_{L_1}$.

An equivalence of categories

Let T/S and T'/S be objects in $ext(S)^a$. Then there are $d \in \mathbb{N}$, a local field K, and extensions L/K, L'/K such that

$$T/S \cong \operatorname{Tr}_{de_{L/K}}(L)/\operatorname{Tr}_{d}(K)$$
$$T'/S \cong \operatorname{Tr}_{de_{L'/K}}(L')/\operatorname{Tr}_{d}(K).$$

A morphism from T/S to T'/S in $ext(S)^a$ is defined to be an $R(\psi_{L/K}(a))$ -equivalence class of morphisms in ext(S).

Theorem ([De79], Theorem 2.8)

Let $d \in \mathbb{N}$ and $1 \leq a \leq d$. Then the functor $\mathcal{F} : ext(K)^a \to ext(Tr_d(K))^a$ which maps L/K to $Tr_{de_{L/K}}(L)/Tr_d(K)$ is an equivalence of categories.

An application

Corollary

Let K and F be local fields which have the same residue field k and satisfy $e_K \leq e_F$. Then for $1 \leq d \leq e_K$ there is an equivalence of categories between $ext(K)^d$ and $ext(F)^d$.

In particular, there is a one-to-one correspondence between separable extensions L/K with $m_{L/K} < e_K$ and separable extensions E/F with $m_{E/F} < e_K$.

Proof: Since $d \leq e_K \leq e_F$ we have

$$\operatorname{Tr}_{d}(K) \cong (k[[t]]/(t^{d}), (t)/(t^{d+1}), \epsilon) \cong \operatorname{Tr}_{d}(F).$$

The equivalence of categories given by the corollary depends on choices of uniformizers for K and F.

This corollary allows us to use constructions of extensions of local fields in characteristic p to get extensions in characteristic 0, and vice-versa.

Making the correspondence explicit

Let K and F be local fields, with char(K) = 0 and char(F) = p. Assume that K and F have the same residue field k, and choose uniformizers π_K , π_F for K, F.

Let $d \le e_K$, and suppose $E/F \in ext(F)^d$ is totally ramified of degree *n*. Let π_E be a uniformizer for *E* and let

$$g(T) = T^n + \sum_{i=0}^{n-1} a_i T^i$$

be the minimum polynomial for π_E over F. Write $a_i = a_i(\pi_F)$ as a power series in π_F with coefficients in k.

Let $A_i(X) \in \mathcal{O}_{\mathcal{K}}[[X]]$ be the series obtained from $a_i(X)$ by replacing each coefficient by its Teichmüller representative in $\mathcal{O}_{\mathcal{K}}$. Set

$$G(T) = T^n + \sum_{i=0}^{n-1} A_i(\pi_K) T^i$$

and let *L* be generated over *K* by a root of G(T). Then the equivalence of categories from $ext(F)^d$ to $ext(K)^d$ maps E/F to L/K.

Comparison with local class field theory

Let K be a local field of characteristic 0 with finite residue field k. Set F = k((t)). Suppose $1 \le d \le e_K$ and fix a uniformizer π_K for K. Then there is a group isomorphism

$$F^{\times}/(1+\mathcal{P}_F^d)\cong K^{\times}/(1+\mathcal{P}_K^d).$$

To describe this isomorphism let $t^i u(t) \in F^{\times}$ with $u(t) \in k[[t]]^{\times}$. Define $U(t) \in \mathcal{O}_{K}[[t]]$ to be the series obtained by replacing each coefficient in u(t) by its Teichmüller representative in \mathcal{O}_{K} .

Then the isomorphism above maps the coset represented by $t^i u(t)$ onto the coset represented by $\pi^i_{\mathcal{K}} U(\pi_{\mathcal{K}})$.

By class field theory and the above isomorphism we get a one-to-one correspondence between finite abelian extensions L/K such that $m_{L/K} < d$ and finite abelian extensions E/F such that $m_{E/F} < d$.

This correspondence is in agreement with Deligne's equivalence of categories between $ext(K)^d$ and $ext(F)^d$.

Application to embedding problems

Let G, \widetilde{G} be *p*-groups and let $\pi : \widetilde{G} \to G$ be an onto homomorphism. Let K be a local field with residue characteristic *p*. Let L/K be a finite totally ramified Galois extension and let $\phi : G \to \text{Gal}(L/K)$ be an isomorphism.

The embedding problem associated to this data asks for the following:

- A Galois extension \widetilde{L}/K with $L \subset \widetilde{L}$.
- An isomorphism $\tilde{\phi} : \tilde{G} \to \text{Gal}(\tilde{L}/K)$ such that the following diagram commutes:

If char(K) = p then this type of embedding problem can always be solved, as shown by Witt [Wi36]. If char(K) = 0 then the embedding problem may or may not have a solution.

Application to embedding problems (continued)

We wish to use Deligne's result to get sufficient conditions for an embedding problem in characteristic 0 to be solvable.

Let K be a local field of characteristic 0 and let L/K be a totally ramified Galois extension. Let $\pi : \tilde{G} \to G$ be an onto homomorphism of p-groups and let $\phi : G \to \text{Gal}(L/K)$ be an isomorphism.

If $e_K > m_{L/K}$ then there is a *G*-extension E/F of local fields of characteristic *p* which corresponds to L/K. The embedding problem associated to $\pi : \tilde{G} \to G$ and E/F has a solution \tilde{E}/F .

Can we use Deligne to get a solution \tilde{L}/K to the original embedding problem in characteristic 0?

It follows from [EK23] that there is C > 0, depending only on the group extension $\pi : \widetilde{G} \to G$, such that there exists a solution \widetilde{E}_0/F to the characteristic- ρ embedding problem satisfying $m_{\widetilde{E}_0/F} \leq Cm_{E/F}$.

Hence if $e_K > Cm_{L/K} = Cm_{E/F}$ then the characteristic-0 embedding problem has a solution \tilde{L}_0/K .

References

[De79] P. Deligne, Les corps locaux de caractéristique p, limites de corps locaux de caractéristique 0, in: Representations of Reductive Groups over a Local Field, Travaux en Cours, Hermann, Paris, 1984, 119–157.

[EK23] G. G. Elder and K. Keating, Galois scaffolds for p-extensions in characteristic p, preprint.

[Wi36] E. Witt, Konstruktion von galoisschen Körpen der Charakteristik p zu vorgegebener Gruppe der Ordnung p^{f} , J. Reine Angew. Math. **174** (1936), 237–245.